
Abstract

A dependence model for reverse engineering should treat pro-

cedures in a modular fashion and should be fine-grained, dis-

tinguishing dependences that are due to different variables.

The program dependence graph (PDG) satisfies neither of

these criteria. We present a new form of dependence graph

that satisfies both, while retaining the advantages of the PDG:

it is easy to construct and allows program slicing to be imple-

mented as a simple graph traversal. We define ‘chopping’, a

generalization of slicing that can express most of its variants,

and show that, using our dependence graph, it produces more

accurate results than algorithms based directly on the PDG.
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1 Introduction

Many analyses and transformations of programs are based on

dependence relationships, often represented by the program

dependence graph (PDG). Originally devised for compilers, its

novelty was to combine dataflow and control dependences in a

single graph, making code optimizations easier to perform

[FOW87]. More recently, the PDG has been adopted in soft-

ware engineering, for analyses whose outputs are intended not

for compiler backends but for software developers. Program

slicing in particular benefits greatly, being reduced to a simple

reachability problem [OO84] far simpler than its original for-

mulation [Wei84].

But the PDG is too coarse for software engineering applica-

tions. The notion of program dependences arose from the

question of whether a compiler can reorder statements with-

out affecting execution behaviour: a statement that reads a

variable, for example, cannot be swapped with an earlier state-

ment that writes it. For this purpose, dependences between

variables are auxiliary, and, in the construction of the PDG, are

discarded, leaving only dependences between statements.

Questions about dependences between variables are thus inex-

pressible; one cannot determine from the PDG, for example,

which variables at the start of a procedure might affect a given

variable at the end.

Slicing suffers a loss of precision from the coarseness of the

PDG. In Weiser’s formulation, the slice criterion identifies one

or more variables at a given line, and the slice is a subprogram

whose statements might affect the value of those variables just

prior to execution of that line. In PDG formulations of slicing,

such as [RY89], on the other hand, a slice criterion is a node of

the graph—that is, a program statement—and the slice con-

tains statements that might affect the value of any variable

used by that statement. For the statement

a := b + c

a PDG-based slicer equates three distinct criteria: the defini-

tion of a, the use of b and the use of c.

This loss of precision can be overcome by exposing the

internal structure of PDG nodes, reconstructing the depen-

dences between variables from the syntax of the program

statements. Two approaches are possible. One can adapt the

slicing algorithm to accommodate special cases; a slice on the

use of a variable, for example, can be translated into a slice on

all the nodes containing definitions that reach that use. The

structure of the PDG is untarnished, but the algorithm is no

longer a simple graph traversal. Alternatively, one can adapt

the PDG itself, splitting nodes to distinguish variables where

necessary. To allow slicing on the final value of a variable, for

instance, one can provide a ‘final use’ node for every variable
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in the program [RY89]. And to distinguish the uses and defini-

tions of a procedure call, which is essential for reasonable

interprocedural slices, one can insert a mock assignment node

for every passing of a parameter, and for every reading and

writing of a global by the called procedure [HRB90].

Program slicing is not alone; there are many analyses based

on dependences for which the PDG is not ideal. We were

unable to use PDGs, for example, in a tool that used unsatis-

fied dependences to detect bugs [Jac93] or in a differencing

tool that compared programs according to their dependences

[JL94]. Reverse engineering in particular demands two proper-

ties of a dependence model, neither of which the PDG satis-

fies:

1. Procedures should have a modular representation.

Queries and reports about procedure calls can then be imple-

mented without complex mappings between the user’s view of

the code and the underlying dependence graph, and without

compromising the coherence of the graph or the algorithms

operating upon it. Procedures without code, such as library

routines, can be smoothly accommodated (with dependence

specifications to replace their bodies) and, in the absence of

recursion, procedures can be analyzed independently.

2. The dependences should be fine-grained, relating not

whole statements but, rather, definitions and uses of individual

variables. Otherwise, queries and reports can only be cast in

terms of program statements, and data structures are relegated

to a secondary role.

The model should also retain the desirable properties of the

PDG: simplicity, ease of construction and support for slicing as

graph traversal.

To address these properties, our model differs from the

PDG in two respects. First, the dependences relate instances of

variables (definitions and uses at particular sites) rather than

program statements. Second, a procedure call is modelled as a

single node with summary dependences relating the variables it

defines to the variables it uses. All statements get the same

treatment, so a simple assignment has summary dependences

too, even though these may be determined locally.

To demonstrate the utility of this model, we use it to define

a generalization of slicing called ‘chopping’. Most slicing

notions, such as backward and forward slicing, are easily

expressed as special cases. Chopping produces smaller slices

than simple PDG-based algorithms, without the complications

of more precise algorithms that use the PDG but compensate

in an ad hoc fashion for its weaknesses.

Throughout the paper, the construction and analysis steps

are given in terms of relational expressions. The operators we

use to compose and project relations are listed in an appendix.

We prefer this formulation to the traditional one—giving

explicit worklist algorithms—primarily because the resulting

definitions are shorter, and perhaps simpler and more direct.

Being specifications of a sort, they also admit, unlike algo-

rithms, a variety of implementations. They are also good for

prototyping. So long as the relational operators are imple-

mented carefully, the analysis can be coded in a few lines by

transcribing the definitions directly. Hardwiring the depen-

dence relations speeds up the graph traversals, and, with suit-

able optimizations, enables the efficiency of the PDG to be

matched.

2 A New Dependence Model

Figure 1 shows a program consisting of three procedures that

access five global variables, a, b, r, f and i. The procedure gold-
en sets r to the golden ratio by generating a fibonacci sequence

(with calls to step) and calculating the ratio of each term b to

its predecessor a (with calls to check). When r converges, check
sets the flag f to false and the loop terminates with i equal to

the number of iterations. 

The diagram shows golden’s dependence graph. The boxes

represent statements (such as the assignment i := 0) and condi-

tional tests (while f); there are also special boxes, entry and

exit, that model the calling context of the procedure.

Each box has ports labelled with variables, one for each

variable used by the statement (at the top of the box) and one

for each variable defined (at the bottom of the box). Since a

procedure is called in a context that defines variables before

the call and use them after, the entry box has a definition port

for every variable, and the exit, a use port. There are three spe-

cial symbols that also label ports: †, a temporary that holds the

result of a conditional test, ç, which represents a constant, and

¥, which stands for ‘execution’.

Edges between ports denote dependences. An edge between

boxes that connects program variables is a dataflow depen-

dence. The edge between the i definition port of i := 0 and the

i use port of step(), for instance, says that the use of i by step()
may depend directly on a preceding definition by i := 0. 

An edge between boxes that connects a † port to an ¥ port is

a control dependence. The edge connecting while f to step, for

instance, indicates that the execution of step may depend on

the result of evaluating the loop condition.

An edge inside a statement’s box (shown dotted) represents

a dependence brought about by the statement itself. In step(),
for instance, the edge from the use of a to the definition of b
says that an execution of step may use a to define b. There is

no edge from the use of a to its definition, since a is always set

to b and thus cannot depend on its previous value. Every vari-

able that is defined in a statement box depends on the use of

the special symbol ¥. The edges from ¥ to a and b say that the

definitions of a and b depend on whether or not step() is exe-

cuted. When a statement defines a variable without reference

to a use, a dependence on the constant symbol ç is introduced.

The assignment i := 0, for instance, has an edge from ç to i
since i is defined but the resulting value does not depend on

the previous state.

A box’s internal edges may be viewed as a dependence spec-

ification of the corresponding statement. For a primitive state-

ment, the specification follows simply from the syntax of the

statement, according to the semantics of the programming lan-

guage. For a procedure call, the specification is a summary of

the dependence graph of the procedure body. The dependence

of b on a in step(), for instance, summarizes the chain in the

body of step that passes back from the definition of b through

the temporary t to the initial use of a. Procedures without

code, such as library routines, can be given surrogate specifica-

tions in place of code to be incorporated directly [Jac93].

To see how the dependence edges fit together, let’s slice on

the use of a by the statement step(). That is, we want to deter-

mine which statements might affect the value of a just prior to



the call to step. Slicing, as in the PDG, is just graph traversal:

we follow the edges backwards, marking boxes encountered

on the way. The use of a has two incoming edges. One takes us

to the definition of a at the entry. The other edge is a loop-car-

ried dependence; it takes us to the definition of a by step()
itself. Crossing the step() box to the relevant uses leads us to b
and ¥. Following the use of b takes us to the definition of b by

the entry, and, via another loop-carried dependence, to the

definition of b by step(). Crossing step() a second time brings in

the uses of a, b and ¥. We have already taken the paths from a
and b, so we follow the edge incident on ¥. This takes us to the

loop condition, and subsequently to f := true and the call to

check. The resulting slice includes every box except the exit

and the assignment i := 0.

To see why variable uses and definitions must be distin-

guished, consider a slice at step() on the use of i instead of a.

This should include i := 0. A PDG-based algorithm cannot

generally make such distinctions without ad hoc additions,

such as special nodes for the final use and initial definition of

variables [RY89], mock assignments for passing parameters

and globals in and out of procedure calls [HRB90], and the

splitting of nodes (or adaptation of the search algorithm) for

separating the uses of a primitive statement. Our graph sup-

ports simple traversal algorithms without such tricks.

3 Formalization of the Graph

A dependence relates a variable at one program point to a vari-

able at another. We could define a point before and after each

statement, but it is simpler to define a single site for each state-

ment, and separate uses and definitions by formalizing internal

and external edges as two distinct relations. An instance is a

pair consisting of a variable and a site; variables include the

special symbols, and sites include the entry and exit:

Var = ProgramVariable … {ç, ¥, †}
Site = ProgramStmt … {entry, exit}
Instance = Var ° Site

It is convenient to split the external edges into two relations, a
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5: check()

2: f := true

f
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3: while f
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6: EXIT
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to f at 5, 6

a, b: int := 1
r: real := 0
i: int
f: bool

proc step
t: int
t := a + b
a := b
b := t
i := i + 1

proc check
if r = b/a then

f := false
else

r := b/a
end

proc golden
i := 0
f := true
while f  do 

step ()
check ()
end

Figure 1: A program and the dependence graph of one procedure, golden



dataflow dependence relation ud and a control dependence

relation cd. A third relation du models the internal edges.

ud, cd, du: Instance ™ Instance

The ud relation connects a use of a variable at one site to a def-

inition of the same variable at another; cd connects an execu-

tion of one statement to a temporary defined by another; and

du connects a definition of a variable at one site to a use of

another at the same site:

ud ≤ {((x, i), (x, j)) | x ⁄ ProgramVariable  fl  i, j ⁄ Site}
cd ≤ {((¥, i), (†, j)) | i, j ⁄ ProgramStmt}
du ≤ {((x, i), (y, i)) | x, y ⁄ ProgramVariable  fl  i ⁄ Site}

All variables are defined at the entry and used at the exit:

ProgramVariable ° {entry} ≤ dom du
ProgramVariable ° {exit} ≤ ran du

Sometimes we shall not want to distinguish control and

dataflow dependences, so we give a name to their union:

ucd = ud … cd

Here are some examples. Let’s identify sites by numbering the

statements (as in Figure 1). The edge from the definition of a at

the entry to its use at step() belongs to ud, and is given by the

pair

((a, 4), (a, 0)).

The internal edge from this use of a to the definition of b
belongs to du, and is given by

((b, 4), (a, 4)).

The indirect dependence of the definition of b at step() on its

definition at the entry

((b, 4), (a, 0))

belongs to the composition du ø ud. Similarly the definition of

r at check() depends indirectly on the use of f by the loop test

because of the path

((r, 5), (¥, 5)) ⁄ du,
((¥, 5), (†, 3)) ⁄ cd,
((†, 3), (f, 3)) ⁄ du

summarized by the pair

((r, 5), (f, 3)) ⁄ du ø cd ø du.

All indirect dependences belong to one of four closures. UU
contains dependences of uses on uses; DD relates definitions to

definitions; UD relates uses to definitions; and DU relates defi-

nitions to uses:

UU = (ucd ø du)*
DD = (du ø ucd)*
UD = ucd ø (du ø ucd)*
DU = du ø (ucd ø du)*

The operator * is the reflexive (and transitive) closure, so it

includes direct dependences also, and in the case of UU and

DD, a dependence of each use or definition on itself. (Both UU
and DD actually contain dependences of every instance on

itself, so dom UU, for instance, is not equal to dom ud, the set

of all uses.)

The naming convention allows a simple kind of type check-

ing. Note how adjacent u’s and d’s are matched in the closure

expressions. An expression like

ucd ø ucd

makes no sense because it confuses uses and definitions; the

second ucd treats as a use the definition in the range of the

first.

The du relation, incidentally, should not be confused with

du-chaining [ASU88]. We chose to order the relations so that

membership of a pair ((x, i), (y, j)) can be read ‘x at i depends

on y at j’. An element of a du-chain is a dependence of a use on

a definition, and would thus belong to ud and not du.

Our treatment of modifications is also unconventional.

Dependences on ç allow the du relation to express, additional-

ly, the set of variables modified by a statement, which would

otherwise have to be maintained separately. These dummy

dependences model not only assignments of constants, but any

modification that has no explicit dependences (usually due to

non-determinism, such as a read operation in which the input

stream has no name).

4 Chopping: A Modular Generalization of Slicing

Chopping is a generalization of slicing. Although expressible as

a combination of intersections and unions of forward and

backward slices, chopping seems to be a fairly natural notion

in its own right.

Two sets of instances form the criterion: source, a set of def-

initions, and sink, a set of uses. Chopping a program identifies

a subset of its statements that account for all influences of

source on sink. A conventional backward slice is a chop in

which all the sink instances belong to the same site, and the

source set contains every variable at every site.

A chop is confined to a single procedure. The instances in

source and sink must be within the procedure, and chopping

only identifies statements in the text of the procedure itself. We

believe that, for reverse engineering at least, analyses should be

modular, respecting the structure of the program. Since pro-

grammers tend to approach a new program one procedure at a

time, it seems that a reverse engineering tool should do the

same. The form of our dependence graph supports modular

chopping quite naturally; by presenting not only relevant state-

ments but relevant dependence edges too, the role of a proce-

dure call in a chop can be explained to the user without requir-

ing a foray into its body. Moreover, should a programmer

want a traditional interprocedural slice that extends both into

the code of called and calling procedures, the chop contains

sufficient information (namely the relevant instances) to initi-

ate further chops in different scopes.

Suppose, for example, we want to slice golden (Figure 1) on

the use of a by the call to step. The criterion is

source = Var ° Site
sink = {(a, 4)}

and the resulting chop is shown in Figure 2. By examining the

edges in the graph, we can see why, for example, check() is



included: it defines f, the flag that controls the loop. To follow

the slice into check(), we note that check()’s definitions of both

f and r were included in the chop (since the definition of f
depends on the use of r, via du, and the use of r depends on its

definition in a previous loop iteration, via ud). The relevant

statements inside check are then found by chopping it with

source = Var ° Site
sink = {(f, exit), (r, exit)}

where exit now refers to the graph for check.

5 Formalization of Chopping

Rather than give explicit algorithms for the traversal of the

dependence graph, we shall use the closures from Section 3

(and relational operators defined in the appendix). Recall that

UU relates each use of a variable to all the other uses in the

procedure it depends on, directly or indirectly. The projection

UU (sink)

thus defines the uses that might affect sink. Similarly, the defin-

itions affected by source are found by projection under the

inverse of DD:

DD_(source)

The chop is obtained by selecting edges from the graph that

connect relevant definitions to relevant uses:

udæ = UU (sink) Ô ud ∆ DD_(source)
cdæ = UU (sink) Ô cd ∆ DD_(source)
duæ = DD_(source) Ô du ∆ UU (sink)

It can be presented in various ways. A tool might display the

entire subgraph, showing all three sets of edges. It might show

only the edges between boxes (udæ and cdæ) or perhaps just the

dataflow edges (udæ). A textual display would highlight the set

of relevant statements, given by

sites (UU (sink)) Ú sites (DD_(source))

where

sites (I) = {s | (s, x) ⁄ I}.
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5: check()

2: f := true

f

ç ¥ 

3: while f
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b
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4: step()

f

to f at 5

Figure 2: Slice of procedure golden (Figure 1) on use of a by step()

a, b: int := 1
r: real := 0
i: int
f: bool

proc step
t: int
t := a + b
a := b
b := t
i := i + 1

proc check
if r = b/a then

f := false
else

r := b/a
end

proc golden
f := true
while f  do 

step ()
check ()
end



Most slicing notions that have been proposed can be

expressed as forms of chopping:

(1) a traditional backward slice on the use of variables V at

site i:

source = Var ° Site, sink = V ° {i}

(2) a forward slice [YL88] on the definition of variables V at

site i:

source = V ° {i}, sink = Var ° Site

(3) a backward slice on all uses and definitions of variables

at site i [RY89]:

source = Var ° Site, sink = Var ° {i}

(4) and a backward slice on the final value or any definition

of a variable v [GL91]:

source = Var ° Site, sink = du({v} ° Site) … {(v, exit)}.

The original formulation of slicing identifies the statements

that affect the value of a variable just prior to the execution of

a given statement [Wei84]. Since the variable need not be used

by the statement, this criterion cannot be expressed in our

model. The value of a variable at an arbitrary site is only well

defined given a strong semantic interpretation of the program

that requires that the statements be executed in their syntactic

order. Many compiler optimizations exploit a weaker seman-

tics in which independent statements can be reordered. It is no

surprise that program dependences, originally devised precise-

ly to justify such reorderings, cannot support this form of slic-

ing.

6 Constructing the Dependence Graph

Each site in the dependence graph has a specification that sum-

marizes the dependences between the variables it defines and

the variables it uses. These dependences are the internal edges

in Figure 1, and, labelled by site and collected over the graph,

the du relation of Section 5.

Let the specification spec(i) of a site i be a relation on vari-

ables

spec: Site ¡ (Var ™ Var)

where

(x, y) ⁄ spec(i)

when x depends on y at site i, that is, the statement at site i uses

y to define x. Given these specifications, the dependence graph

is easily constructed. Each site has a set of uses

uses (i) = dom spec(i)

and a set of definitions

defs (i) = ran spec(i).

From these two sets, the dataflow and control dependence

edges are computed by the same technique used to construct

the PDG. A set of reaching definitions is found for each site: a

definition of variable x at node i reaches a node j if there is a

path from i to j with no intervening definition of x [ASU88].

For each of these, if x is used at j, the edge ((x, j), (x, i)) is

inserted into ud. The control dependence edges are a little

trickier. A post-dominator tree is calculated that associates the

site of each conditional with the set of sites whose execution it

influences directly [FOW87]. For each edge in the tree from

site i to site j, the edge ((¥, j), (†, i)) is inserted into cd.

The du relation is trivial to construct from the specifica-

tions; it presents the same information in a different way, and

adds a dependence of each defined variable on the special sym-

bol ¥:

(x, y) ⁄ spec(i)   ›  ((x, i), (y, i)) ⁄ du fl ((x, i), (¥, i)) ⁄ du

Now the novel part: constructing the specifications. A

primitive statement has a specification given by its syntax in a

manner determined by the programming language. The assign-

ment

a := b + c

at site i, for instance, gives

spec(i) = ((a, b), (a, c)).

Library or system calls require specifications to be provided; a

call that writes a string s to the screen

put (s)

for instance, might have

spec(i) = {(screen, screen), (screen, s)}.

For a call to a procedure whose code is available, the specifica-

tion is obtained from the dependence graph of the called pro-

cedure. To do this, we identify, within the procedure body, uses

that are reached by, and definitions that reach, statements in

the calling context. Call these the exposed uses and definitions.

We then calculate the dependences of exposed definitions on

exposed uses, by abstracting away intermediate edges. To find

the exposed instances, there is no need actually to consider

dependences that cross the procedure call boundary, since

prior definitions are modelled by the called procedure’s entry

site, and subsequent uses by its exit.

Suppose, for example, that we want to determine the spec-

ification of the call to check in golden (Figure 1). The depen-

dence graph for check is shown in Figure 3. The exposed defi-

nitions are (r, 3) and (f, 2), and the exposed uses (a, 1), (b, 1),
(r, 1) and (a, 3) and (b, 3). The indirect dependences of (f, 2)
on (a, 1), (b, 1) and (r, 1) are abstracted into the specification

dependences

(f, a), (f, b) and (f, r)

and the direct dependences of (r, 3) on (a, 1), (b, 1), (r, 1), (a,
3) and (b, 3) into

(r, a), (r, b) and (r, r)

Two complications may arise in this calculation. An exposed

definition (x, i) might have no corresponding exposed use,

because it depends on the constant symbol ç. In this case the

specification must include

(x, ç).

More subtly, if a variable’s definition is conditional, the specifi-



cation must include a dependence of the variable on itself. In

check, for example, both definitions (f, 2) and (r, 3) are condi-

tional—otherwise the graph would show no edges labelled f
and r between entry and exit—adding

(f, f)

to the specification, (r, r) already having been included.

It might strike the reader as odd to handle conditional defi-

nitions in this way, rather than perhaps introducing some

notion of a conditional dependence pair. If a definition of f
were to immediately precede the call to check, the dependence

graph of the caller would show no edges from that definition

beyond the call, and yet, if the body of check were inlined,

there would be a definition-free path and that definition would

reach subsequent uses. Although strange, this follows directly

from abstracting the procedure call. The statements

if b1 then b2 := true

and

b2 := b1 or b2

behave identically, and as bodies of a procedure, would have

the same specification

{(b2, b2), (b2, b1)}

even though, when inlined, only the second would kill preced-

ing definitions.

To formalize the construction of the specification, we start

by noting that the definitions at the entry and the uses at the

exit are not effects of the procedure body, but model the call-

ing context. So we define

entryDefs = Var ° {entry}
exitUses = Var ° {exit}.

The exposed definitions are those that reach the exit from the

body of the procedure

expDefs = ud (exitUses) \ entryDefs

and the exposes uses are those within the body reached by the

entry

expUses = ud_(entryDefs) \ exitUses

To find how the definitions depend on the uses, we restrict the

DU closure to dependences of exposed definitions on exposed

uses

DUæ = expDefs  Ô DU ∆ expUses

and project out the sites, obtaining a relation between vari-

ables:

deps = {(x, y) | ´ i, j ⁄ Site. ((x, i), (y, j)) ⁄ DUæ}

If a variable used at the exit has a direct dependence on a defi-

nition of the same variable at the entry, it may be invariant:

invs = {x ⁄ Var | ((x, exit), (x, entry)) ⁄ ud}

b ra f

0: ENTRY

2: f := false

f

ç ¥ 

b ra f

4: EXIT

b

r

¥ 

3: r := b/a

a

1: if r = b/a
† 

¥ b ra

Figure 3: Procedure check and its dependence graph.

proc check
if r = b/a then

f := false
else

r := b/a
end



On the other hand, a variable that has an exposed definition

might be modified

mods = {x ⁄ Var |  ´ i ⁄ Site. (x, i) ⁄ expDefs}.

The final specification contains pairs for three kinds of defini-

tion:

spec = deps
… (mods \ (invs … dom deps)) ° {ç}
… {(x, x) | x ⁄ mods Ú invs}

The first term gives the definitions that depend on exposed

uses; the second gives definitions that have no explicit depen-

dence; and the third adds self-dependences for variables that

are potentially unmodified.

Some details have been omitted in this explanation.

Variables local to the scope of the called procedure (such as t in

step in Figure 1) are simply dropped from the specification.

Call-by-value parameters are handled by renaming formals to

actuals when the du relation is constructed from the specifica-

tion.

Recursion prevents the simple bottom-up construction of

specifications, but the scheme is easily extended. Initially, the

specification of each procedure is calculated from its depen-

dence graph on the assumption that recursively called proce-

dures have empty specifications. The specifications are then

recalculated, using the new approximations of called proce-

dures, repeatedly until a fixpoint is reached.

This calculation can be efficiently implemented as a graph

traversal. The specification of a procedure is found by tracing

backwards from the exit, maintaining at each instance in the

graph the set of exit variables it influences. When a variable is

already in the set, it is propagated no further; each variable is

thus propagated at most once along each edge. For k variables

and n instances, this bounds the execution time by kn2. Most

statements only access a few variables, so n varies linearly with

the size of the program. Experiments will determine how effi-

cient this approach is, but we suspect it to be no worse than the

best existing methods [R+94].

7 The Chopshop Tool

The dependence model was designed for Chopshop, a tool we

have built to analyze C programs. Chopshop is written in ML

and runs as subprocess of emacs 19. Chopping criteria are

given by clicking on variables that appear in the text buffer and

selecting options from a menu.

Chops are presented in two ways: by highlighting of rele-

vant instances in the code, and by display of a dependence

graph (with the help of dot, a utility that generates postscript

from an adjacency list representation, and ghostview, a post-

script previewer). Sites are represented as simple nodes, and ud
edges alone are shown, each with a label to show which vari-

able carries the dependence.

Graphs of even the smallest chops tend to be huge, but we

have found that a few simple abstraction mechanisms—such as

eliding primitive statements and folding calls of the same pro-

cedure—reduce the size drastically without adversely affecting

the graph’s utility [JR94].

Our current challenge is to incorporate aliasing in a modu-

lar fashion, probably combining ideas taken from abstract

interpretation schemes [LH88] and more specialized tech-

niques [PLR94].

8 Related Work

A number of dependence representations have been developed

that treat procedures in a modular fashion. The value depen-

dence graph (VDG) [W+94] associates summary edges with

calls and supports fine-grained slicing [Ern94]. Being designed

primarily as an intermediate representation for a compiler, the

model does not seem to incorporate codeless procedures as

smoothly. It is also functional, loops being replaced by recur-

sive calls and mutation of variables being modelled explicitly

with store update operations. More significantly, the VDG is

focused on operations where our graph is focused on variables.

A slicer based on the VDG highlights operator symbols and

procedure names rather than variables, and cannot identify

which variables are responsible for dependences between calls.

The dependence specifications originate in our previous

work, where they were used to find bugs in a procedure by

comparing its calculated and expected dependences [Jac91].

Dependence relations were also used in the Spade tool to

detect dataflow anomalies and to extract ‘partial statements’

similar to program slices [BC85]. These relations have a differ-

ent form, however; lacking a distinction between uses and def-

initions of the same variable occurrence, they seem unable to

handle procedure calls with side effects.

Moriconi and Winkler’s inference rule system for determin-

ing the scope of a program change [MW90] defines a depen-

dence relation too, but implicitly as a set of inference rules

over the syntax. Procedure calls are abstracted, since the proof

of a dependence due to a call can be built from rules applied to

its body. It might be interesting to see how this logic is related

to our dependence graph.

Finally, Wilde and Huitt’s ‘external dependency graphs’

seem to be identical to our specifications. They are mentioned

briefly in [WH91], along with a variety of other dependence

relations, but with no explanation of how they are constructed

and used.
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Appendix: Relational Operators

The paper uses the Z syntax [Spi89] for operators on sets and

relations. Throughout, s and t are sets of elements of type T,

and p and q are binary relations on T.

set difference s \ t = {e: s | e ¤ t}

identity relation I = {(t, t) | t: T}

domain dom p = {a: T | ´b: T. (a, b) ⁄ p}

range ran p = {b: T | ´a: T. (a, b) ⁄ p}

inverse p_ = {(b, a) | (a, b) ⁄ p}

composition p ø q = {(a, b) | ´z: T. (a, z) ⁄ p fl (z, b) ⁄ q}

domain restriction s Ô p = {(a, b) ⁄ p | a ⁄ s}

range restriction p ∆ s = {(a, b) ⁄ p | b ⁄ s}

image p(s) = {b | ´a: s. (a, b) ⁄ p} = ran (s Ô p)

The reflexive and transitive closure of p

p* = I  …  p  …  (p ø p)  …  (p ø p ø p)  … ...

is the smallest relation containing p that is reflexive (I ≤ p*)

and transitive (p* ø p* ≤ p*).
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